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The flow in a two-phase boundary layer under velocity nonequilibrium conditions without 
heat transfer was examined in [1-3], and in the presence of velocity and temperature non- 
equilibrium and heat transfer in [4, 5]. 

Numerical and approximate analytic solutions are obtained in this paper for the problem 
of a two-phase laminar boundary layer on a plate with a compressible carrying phase under 
conditions of velocity and temperature nonequilibrium in the presence of heat transfer from 
the surface in the subsonic flow mode. 

i. Formulation of the Problem 

We examine the flow of a gas suspension of particles in the boundary layer near a plate 
installed parallel to the undisturbed stream. We assume that the volume fraction of the 
chemically inert spherical particles is small, the local flow characteristics differ in- 
significantly from the mean-volume, the physical density of the particles is much greater 
than the density of the carrying phase, and the Brownian motion of the particles is not sub- 
stantial. Then for small Mach numbers the flow of the gas suspension is described by a system 
of equations in dimensionless form [i, 3] 

Opu apt, 0 0 

= - -  I " , ~ '  = - -  - -q~ '  9 = -F '  P-d-t O-y ~ "O-y P-~ Oy ~, Pr Oy ( 1 . 1 )  

dsu s dsV s dsTs 
P, - -Z-  = 1,,~, P, ' Z -  = 5 ,y ,  e ~ - - ~  = q~, 

d 0 0 ds 0 0 
dt ~ u -y f  + v ~ , -s =-- u~-s + v~ ~ .  

Here x = x'/L, y = y'/(LRe I/2) are dimensionless coordinates (the x axis is along the plate 
while the y axis is along its normal), u = u'/u~, v = v'(u~Re I/2) are dimensionless compo- 
nents of the velocity vector v in the x and y directions, respectively, Re = p'u~L/~" is the 
Reynolds number, L is the characteristic dimension (will be selected later), p = p'/p', T = T' / 
T', ~ = ~'/~' are the dimensionless density temperature and viscosity coefficient of the gas, 
]s = ps(CDlCDo)( v -- Vs)/av, qs = ps(cJc~,)~(Nu/Nuo) (T " T s)/a T are the dimensionless interphasal inter- 
action force and-heat flux, ov = "%uoJL, (~T = 1.5 Pr(c~/cp)(~ v are the Stokes number of the dynamic 

" 0 2  ~, and thermal phase interaction, - % -  p~ds/18 is the characteristic relaxation time of the par- 
ticle velocity, Pr =~'cp/% is the gas phase Prandtl number, ds, p~ are the particle diameter 
and physical density, CD and Nu are the coefficients of drag and heat transfer of the particle, 
CD0 = 24/Res and Nu0 = 2 are values of these coefficients for the Stokes flow model Res---- 

i t r 

p~Iv'--vslds/lz is the particle Reynolds number, cp, Cs are the gas phase specific heat 
for constant pressure and the particle specific heat; the subscripts s, ~ and the prime 
refer to the particle parameters, to the unperturbed, and to the dimensional parameters. 

The boundary and initial conditions have the form 

u(x~ oo) = 1, us(x, oo) = t ,  On(x, oo) = Psi, (1.2) 

r (x ,  oo) = t ,  rs(z ,  ~ )  = i ;  

dvse']dx = (re - -  Vse)/c6,; ' ( 1 . 3  ) 

u(z,: 0) = 0,, v(z, 0) = 0, T(x ,  0) = T~(x); ( 1 . 4 )  

o,(% o) = p ~ ,  u~(0, o) = i ,  v~(0, o) = 0, r~(0, 0) = 1, ( 1 . 5 )  

w h e r e  Tw(x)  i s  a g i v e n  d i m e n s i o n l e s s  s u r f a c e  t e m p e r a t u r e  and  t h e  s u b s c r i p t s  w and  e c o r r e -  
s p o n d  t o  p a r a m e t e r s  on  t h e  p l a t e  s u r f a c e  and  on t h e  o u t e r  b o u n d a r y  o f  t h e  b o u n d a r y  l a y e r .  
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The longitudinal velocity component and temperature of the carrying phase in the initial 
section are determined from self-similar equations in Dorodnitsyn-Lees variables that follow 
from the system (i.i) as x + 0. The boundary condition (1.3) for the transverse particle 
velocity component v s on the outer boundary of the boundary layer reflects the effect of 
external inviscid flow interaction with the boundary layer in terms of the velocity compo- 
nent v s . This condition is an additional equation that must be solved in conjunction with 
the system (I.i) since it contains the function v(x, y) unknown prior to the solution of the 
problem. Condition (1.3) is obtained from equations [6] for a gas suspension for large Rey- 
nolds numbers by the method of merging asymptotic expansions [7]. 

2. On the Methodology for Numerical Solution of the Problem 

It follows from the form of the system (i.i) and the boundary conditions (1.2)-(1.5) 
that the solution in dimensionless form depends on seven dimensionless parameters Psi, CJCp, 
Re, Hes~, Tm, Pr, ~ (He~= p~e~ds/~', ~ is the exponent in the power-law dependence of the viscos- 
ity on the temperature). The first four of these are due to the presence of the dispersed 
phase. The presence of particles in a gas complicates investigation of the problem (i.i)- 
(1.5) by known analytic methods substantially especially in the domain of phase velocity and 
temperature relaxation. Consequently, the solution is found numerically on an electronic 
computer. The equations for the carrying phase were solved here by the method of [8] with 
the order of approximation O(Ax 2, &y4) while the equations for the dispersed phase are solved 
along particle trajectories by the Euler method with corrections having a second order of 
approximation. Moreover, iterations were performed until the phase values matched with a 
high degree of accuracy. 

The characteristic dimension L along x was selected equal to the length of the particle 
velocity relaxation on the outer boundary layer boundary L = TveU~ in the computations. A 
power-law dependence on the temperature with exponent ~ = 0.645 is taken for the viscosity 
coefficient, which corresponds to tabulated data for air with around a 6% error in the 300- 
2000 K temperature range. The Prandtl number was assumed equal to 0.72. The phase specific 
heat coefficients were considered constant for simplicity. The drag and heat-transfer coef- 
ficients of a single particle were calculated by the approximate dependences [9, i0]. 

cDi= I + i/6(Re~T~,-- us])~/3, ( 2 . 1 )  

Nu ~= 2 d- 0.46 Pr~/3(R%=l~ --  ~sl) ~ 

3. Discussion of the Results of the Numerical Solution 

The structure of the boundary layer for the case of no heat transfer is investigated in 
[2]. For heat transfer with the surface there are certain features of the velocity profile 
behavior that are determined by the surface temperature. In the neighborhood of the forward 
stagnation point in the boundary layer there is a substantial mismatch in the phase veloci- 
ties and temperatures that diminishes as the coordinate x increases. Two domains can be ex- 
tracted on the basis of an analysis of the numerical results in the boundary layer: a domain 
of velocity and temperature relaxation located for 0 ~ x ~ 2x s (x s is the particle stopping 
point on the plate surface); a domain of almost equilibrium flow (in the terminology of [6]), 
where the longitudinal velocity components and temperatures of the phases are close to each 
other. 

Displayed in Fig. 1 are phase temperature profiles for the cooled plate surface for 
T w = 0.5, Ps= = 3, Cs/C p = 1 in the sections x = 0, 0.2, 2, i0 (curves I-4), the dashes refer 
to the dispersed phase temperature and the solid lines to the carrying phase temperature. 
If not especially stipulated, then the particle drag and heat-transfer coefficients are taken 
Stokesian for simplicity, i.e., c D = i, Nu = 2. It is convenient to solve the problem (l.l)- 

Y 

(1.5) in Dorodnitsyn-Lees variables x, q, where q = ~ p d y / ] / - ~ ,  since the solution starts with 

the self-similar according to the conditions of the problem while the limit solution as x + 
is also self-similar in these variables. These results from an analysis of Fig. 1 that for 
T w < I when the surface temperature is less than the undisturbed flow temperature, the par- 
ticles incident in the boundary layer from the undisturbed external flow heat the carrying 
phase as the coordinate x increases, and are themselves hence cooled. It is interesting to 
note that deceleration of the particles, and therefore, increase in the density Ps of the 
dispersed phase in the neighborhood of the particle stagnation point x s result in the most 
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intensive heat transfer of the phases. Consequently, the temperature of the carrying phase 
takes on the maximal value in the neighborhood of x s (the continuous curve 3) for fixed ~. 
As x increases further the difference in the phase temperatures diminishes and the profiles 
approximate the limit equilibrium solution that corresponds to absence of temperature and 
velocity slip of the phases (continuous and dashed curve 4 coincide). 

For the heated plate surface (T w > I) on the contrary, the particles incident on the 
boundary layer cool the carrying phase and are hence themselves heated. Figure 2 shows tem- 
perature profiles computed for Tw = 2 in the sections x = 0, 0,1, 0.7, i0 (lines i-4), the 
remaining parameters are exactly the same as for Fig. I. It is seen from Fig. 2 that the 
particle temperature grows monotonically (dashed curves) as the coordinate x increases while 
the temperature of the carrying phase rises at the beginning for fixed N and then diminishes 
as x increases. The maximal value of the gas temperature is taken in the neighborhood of x s 
for N = const, i.e., in the neighborhood of the most intensive heat transfer of the phases. 
Relaxation of the temperature profiles (as well as of the velocity profiles) occurs more 
rapidly in the case of a heated plate surface since the coefficient of interphasal heat trans- 
fer is proportional to T ~. The plate surface temperature influences the behavior of the dis- 
persed phase density substantially in the boundary layer. 

Displayed in Fig. 3 are profiles of Ps~/Ps for a "cold" plate surface T w = 0.5 in the 
boundary layer sections x = 0, 0.4, I, 1.6, 3, I0 (curves i-6, respectively) and analogous 
profiles in the boundary layer on a "heated" plate surface (T w = 2) in the sections x = 0, 
0.2, 0.4, 0.7, 1.4, 8 are shown in Fig. 4. The remaining parameters have the same values as 
for the previous figures. The density profile has a maximum within the boundary layer (curve 
2 in Fig. 3) near the leading edge for the "cold" plate surface because of the influence of 
the displacing effect of the leading edge boundary layer. This effect predominates over the 
particle deceleration near the surface on a strongly cooled plate and, consequently, the dis- 
persed phase density near the surface can be less than in the free stream. As x increases 
further, a profile of the density Ps is formed with a maximum on the plate surface (curve 3 
in Fig. 3) because of the predominant effect of particle deceleration. Starting with the 
point x = Xs, the density becomes infinite for ~ = 0, where, as ~-~0 ps~O(~ -I) (see Sec. 4). 

Because of the predominant influence of stagnation over displacement near the heated 
plate surface the profile of Ps has a maximum on the surface. It is interesting to note that 
as x increases a dispersed phase density profile is formed in the outer part of the boundary 
layer that is similar to the density profile of the carrying phase which is characteristic 
for an equilibrium phase flow (see Sec. 5), i.e., for moderate and large n we have Ps > Ps~ 
for T w < 1 while Ps < Ps~ for T w > i. The stagnation and displacement effects exert a gov- 
erning influence on the formation of the Ps profile near the surface. In this connection, 
the density profile can have a complex nonmonotonic behavior for a strongly cooled surface. 

It is interesting to examine the influence of the surface temperature on the behavior 
of the heat transmission and friction coefficients on a plate surface. Superposed in Fig. 5 
are the heat transmission chRe I/2 and friction cfRe I/2 coefficients by continuous and dashed 
lines, respectively, where 
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Curves  1-3 c o r r e s p o n d  t o  T w = 0 . 1 ,  0 . 5 ,  and 2,  t h e  r e m a i n i n g  p a r a m e t e r s  a r e  t h e  same as  f o r  
the preceding figures. A remarkable feature of the behavior of Ch, cf is the presence of 
the maximum in the neighborhood of the stagnation point x s of the particles flying along the 
surface. The reason for this effect is the maximal growth of the mean-integral density Ps 
(over the boundary layer thickness) in the neighborhood of x s because of particle stagna- 
tion. It is seen from the graphs that the initial and limit values as x § ~ diminish as T w 
rises while the maximal values of the coefficients increase, on the contrary. The first 
effect is well known in boundary layer theory [II] and reflects the influence of the tem- 
perature dependence of the viscosity, while the second is apparently caused by two reasons: 
an increase in the density Ps and more intensive heat transfer between the phases. As the 
surface temperature increases, the maximum of Ch, cf shifts to the leading edge and the ex- 
tent of the particle relaxation zone is reduced. For Tw ~ 0.5 the coordinate Xma x correspond- 
ing to the maximum Ch, cf approximately equals the coordinate of particle stagnation Xma x = 
0.9/T~ while for a "quite cold" surface (T w < 0.5) Xma x = 0.5/T~. The Reynolds analogy, 
valid for single-phase flow on a plate [ii]: c h = cfPr -2/3 is satisfied satisfactorily for the 
curves presented in Fig. 5. Let us note that Eqs. (i.i) do not allow the Crocco integral 
that is valid in the whole flow domain. The approximate compliance with relationships of 
the Crocco integral type can only be mentioned for Pr ~ 0.83, Cs/C p ~ 0.8 

T~ = T~ + (i-- T,~)u, T~ = T~ + (i-- r~)u~. (3.1) 

The influence of actual particle drag and heat transfer laws (2.1) on the friction and 
heat transfer in the boundary layer is illustrated by the curves 4 in Fig. 5, that correspond 
to the diminsionless surface temperature T w = 0.5 and the parameter Res~ = 10. An increase 
in Res~ corresponds to growth of the particle dimension and the particle velocity (tempera- 
ture) relaxation time. As Res~ increases (compare with curve 2 obtained for Res~ = 0), more 
intensive particle stagnation and heat transfer occur, the maximum cf, c h shift to the plate 
leading edge and diminish somewhat. 

Presented in Fig. 6 are heat-transmission coefficients for different relationships of the 
phase specific heats Cs/C p and dispersed phase densities in the free stream. Curves i and 2 
correspond to Cs/C p = i/3 and 3 for T w = 0.5, and 3 and 4 to analogous Cs/C n values for a 
"heated" plate surface (T w = 2). It is seen that for both a "cold" and "hot" plate surface 
the heat-transfer coefficient c h depends on the ratio between the phase specific heats: as 
the dimensionless specific heat of the particles increases 10 times, the maximum of the heat- 
exchange coefficient increases approximately two times, the coordinate of the maximumc h 
shifts downstream 2.5-2.7 times. Let us note that the heat-exchange coefficient is more re- 
sponsive to a change in the phase specific heats for the heated plate surface. As a result 
of computations it turns out that the friction coefficients (meaning the velocity profiles, 
also) depend weakly on the relations between the phase specific heats (dashed curves I, 2 and 
3, 4 in Fig. 6). 

Growth of the disperse phase density in the free stream results in a substantial in- 
crease in the heat transfer and friction coefficients. Thus for T w = 0.5, Ps~ = 3, Cs/C p = 3 
(curve 5 in Fig. 6), the maxima of the heat transfer and friction coefficients grow approx- 
imately 1.7 times as compared with the case Ps= = i. 
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4. Asymptotic Solution for the Dispersed Phase near the Plate Surface 

As characteristic dimension L we select the particle velocity relaxation length on the 
outer boundary layer boundary. Here and below we consider T w = const for simplicity. It 
is later convenient to find the solution in four domains, in each of which the solution pos- 
sesses characteristic singularities and is represented in simpler form. 

Let e be a small parameter, the distance between the particle trial trajectory and the 
plate for x = 0. The asymptotic solution for particles of the system of equations (I.i) in 
domain 1 for x ~ O(~), y ~ O(~) is represented in the form 

us : I + O(s~), v8 = s[vs0~) + 0(8 2 )], ( 4 . 1 )  

T, = t + 0 ( ~ ) ,  y~ = ~ + 83y~1(~) + . . . .  7 = x ~  ~. 

The solution for the carrying phase in the neighborhood of x = 0 is used essentially to write 
(4.1). An approximate solution (and even an exact under certain constraints) can be written 
down for Vs0, Ysl in (4.1), however the asymptotic behavior of these functions as x + ~ will 
be of greater interest to us: 

VsoNC, y~o~C~, x - + ~ ,  C = [ I - - u , ( I - - T ~ ) / T , ] / o ~ , ,  C > O  ( 4 . 2 )  

( u , ,  T , ,  ~  a r e  t h e  mean v a l u e s  o f  t h e  r e s p e c t i v e  f u n c t i o n s  a c r o s s  t h e  b o u n d a r y  l a y e r ) .  
There results from (4.i) that the domain i is traversed by the particles parallel to the 
plate in a first approximation, without altering the longitudinal velocity component and 
acquiring the transverse velocity component v s ~ O(e) because of the displacing effect of the 
leading edge boundary layer. The second term for Ys in (4.1) is necessary for merger with 
the solution in the next domain. 

Let us consider the solution in domain 2 for which x..~O(1),x< ~w--~, y.-~O(~). To the 
accuracy of the principal terms we have 

us = Co - -  ~to~,~ + 0(~), v~ = ~C~(Co - -  x /%~) + 0 ( ~ ) ,  

Ts = T,,. + (t T,~) Co %w/oT" (C O --  x/r ,a~,deTw + 0 (~), ( 4 . 3 )  

v ,  = s(c~ + C~x) + O(sg ,  p~ = p ~ / [ ( l  - -  x / , r ~ ) ( t  + c ~ . ) ]  + O(a2). 

From the merger with the solution of (4.1) and (4_.2) in domain i the constants C x, C 2 equal 
C o = i, C I = C, C 2 = i. We conclude from the form and meaning of the solution (4.3) ob- 
tained that the particles in domain 2 near the surface move as in a gas at rest with initial 
velocities and an initial temperature acquired in the domain i. The particle trajectories 
are straight lines deviating from the surface. According to (4.3), the behavior of Psw is 
determined by two factors, the first of which corresponds to the effect of an increase in the 
density due to particle deceleration while the second, on the other hand, assures a diminu- 
tion in the density Ps because of the displacing action of the leading edge boundary layer. 
This latter effect is magnified by the "cold" plate according to (4.3). Numerical results 
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confirm this latter, as presented in Fig. 3 for T w = 0.5 (curve 2). It follows from (4.3) 
that despite the singularity in the behavior of the density Ps as x § Ovw the phase inter- 
action force fs,x remains finite but the interphasal heat flux qs near the surface grows 
without limit for Ovw < OTw. However, this latter singularity is integrable in y for any 
Ovw/OTw > 0 and, as follows from an analysis of the energy integral equation, does not re- 
sult in a singularity in the behavior of the heat flux from the gas phase to the surface. 
For the numerical solution the interphasal heat flux must be integrated with this singularity 
taken into account. 

The domain 3 is in the neighborhood of the particle stagnation point and the condition 
Ix/o~w--I[ ~ 0(8), y~O(~) is satisfied for it. The solution in domain 3 has a buffer, i.e., 
intermediate, structure between the solutions for domains 2 and 4. The main result, needed 
later, is the solution for the principal term Ys, Ys ~ EC3, where C3 = C 2 + C1ovw is a con- 
stant found from merger with the solution in domain 2. 

The last fourth domain lies outside the particle stagnation point, in this domain 
x~O(1), x>~vw + ~, y~O(e). The solution for the principal terms of the dispersed phase 
velocity agrees with the solution for the carrying phase 

= + . . . .  = + . . . ,  

rs =T,~ + eqysop.,/V"~x + . . . .  y = s y ~ o ( x )  + . . . .  (4.4) 

y,o = c S ' ,  p, = + . . .  

We obtain C 4 = C3o~/4 from merger with the solution for Ys in domain 3. We conclude from 
(3.1) that there is a singularity of the type i/y near the surface in domain 4. However, de- 
spite the singularity in Ps, it follows from (4.4) that the interphasal interaction force 
fs,x and the heat flux qs are quantities on the order of smallness of O(g). The viscous 
terms O(e -I) in the carrying phase equations (i.i) have the highest order in domain 4, cor- 
responding to the ~bsence of layer influence with Ps ~ ~ on the solution for the gas phase 
and the continuous continuation of this latter into domain 4 from the outer domain [for y ~ 
0(1)]. 

5. Asymptotic Solution for Small Stokes Numbers 

Since the Stokes number is a function of the temperature, we shall speak here about 
the charactersitic Stokes number o, for which we can select o = Ovw. In this section we 
consider the characteristic length L independent of o v. The case of small Stokes numbers 
that occurs when the characteristic dimension along x is much greater than the particle 
velocity relaxation length, is of interest. Let us note that transformation of the variables 

x~ = xl~, Yl = ylaV~ vl =~I/2 v~ = v~1~ 2 (5.1) 

reduces the boundary layer equation (i.i) to the same equation but with Stokes number one, 
and without altering the boundary conditions (for v w = 0). Hence, in particular, similarity 
of the solution in the boundary layer follows from a Stokes number one for large coordinates 
x and the solution for the small Stokes number with coordinate x ~ O(i) in conformity with 
(5.1). 

From the form of (i.i) with small parameter o it is convenient to partition the whole 
flow domain in the boundary layer into three domains: i) boundary layer for x ~ O(o); 2) 
boundary layer for x ~ O(1), yNO(1), the particles in domain 2 are incident from the undis- 
turbed flow domain; 3) the sublayer for xNO(1), y~(s), lim~(~-+oo [~(o) must be deter- 

mined], where the particles in domain 3 are incident from domain i. 

Let us examine the solution in domain I. The transformation of variables (5.1) reduces 
(i.i) to the same equation but with Stokes number one. The equations are not simplified, 
their solution must be obtained numerically. Substantial phase interaction occurs in domain 
i, resulting in phase velocity and temperature relaxation to certain limit solutions which 
are then transferred into domain 3. The orders of the variables are determined from (5.1). 
One of the singularities in the solution in domain 1 is an inhomogeneous dispersed phase 
profile even for T w = 1 [2]. 

Furthermore, let us examine (i.I) in domain 2. It is easy to obtain that there is no 
phase velocity and temperature slip in a first approximation as o + 0 and the solution will 
satisfy the "effective" gas flow conditions with an increased constant density (I + Psi). 
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Since the characteristic dimension along x is missing in this domain, the solution is then 
found from the self-similar problem 

on---~ (~u,~x) + j x . ~ x  = 0, a (__! 0~ z kprz T~Iz + f~'~ix = 0, p~/p = p~. (5.2) 

~E 

Here qz = ~i + Ps~ 11; /z = ~ ud~; Prz = Pr(l ~- p~cs/ep)/(Id-Psi); I= pp/D~p~. The boundary con- 
0 

ditions for the system (5.2) remain (1.2) and (1.4) as before as follows from the procedure 
for merger with the solution in domain 3. Let us note that the structure of the solution in 
domains 2 and 3 is such that the presence of the thin sublayer 3 does not disturb the solu- 
tion for the velocity and temperature in domain 2. Consequently, the friction and heat flux 
at the wall are found from (5.2). The system (5.2) is well known in boundary layer theory 
[11] and describes the solution of the compressible boundary layer equations on a plate. 
The effective Prandtl number can vary substantially depending on Pr, Ps,~, and Cs/C D. Par- 
ticularly for c s = Cp, it follows from (5.2) that Pr E = Pr and then the limit solution is 
obtained for o + 0 from the solution of the initial problem (1.1)-(1.5) at the forward stag- 
nation point by transformation of the coordinate q + qZ. The heat transmission and friction 
coefficients of the limit solution are here expressed in the form 

c~ = V1 + P~c~0, cj = V1 + P s ~ j o ,  (5.3) 

where Ch0 , cj0 are heat transmission and friction coefficients for x = 0. 

The necessity to introduce the sublayer 3 occurs in connection with the formation of a 
thin domain with substantially inhomogeneous density Ps near the surface. As in domain 2, 
there is no phase velocity and temperature slip ina first approximation in 3. The velocity 
and temperature are determined by expanding the solution of (5.2) for small y. But the equa- 
tion for the dispersed phase density is v.grad Ps = 0. In domain 3 (small y coordinates) we 
obtain from this equation that Ps is conserved along the particle trajectory 

Y S  = O(Zff) 1/4. (5.4) 

The order of the coordinate Ys in (5.4) is determined from the condition for merger with the 
solution in domain l, where O is the merger constant. For T w = I analogous results follow 
from the data of this section [2]. Asymptotic solutions (5.3) for the friction and heat- 
transmission coefficients are superposed in Fig. 1 by dashed curves. It is seen for the 
curves 6 (large x coordinate of small Stokes number) in Figs. 2 and 3 that with the excep- 
tion of a thin domain near the surface, the density profiles Ps are similar to the i/T pro- 
files according to (5.2). 

The asymptotic solutions obtained confirm and supplement the numerical results. 
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